Dynamics in the Intact fd Bacteriophage Revealed by Pseudo 3D REDOR-Based Magic Angle Spinning NMR

Author:

Lusky Orr SimonORCID,Sherer Dvir,Goldbourt AmirORCID

Abstract

AbstractThe development of robust NMR methodologies to probe dynamics on the atomic scale is vital to elucidate the close relations between structure, motion, and function in biological systems. Here we present an automated protocol to measure, using magic-angle spinning NMR, the effective13C-15N dipolar coupling constants between multiple spin pairs simultaneously with high accuracy. We use the experimental dipolar coupling constants to quantify the order parameters of multiple C-N bonds in the thousands of identical copies of the coat protein in intact fd-Y21M filamentous bacteriophage virus, and describe its overall dynamics on the sub-millisecond time scale. The method is based on combining three pseudo three-dimensional NMR experiments, where a rotational echo double resonance (REDOR) dephasing block, designed to measure internuclear distances, is combined with three complementary13C-13C mixing schemes: dipolar-assisted rotational resonance, through-bond transfer-based double quantum / single quantum correlation, and radio-frequency driven recoupling. These mixing schemes result in highly resolved carbon spectra with correlations that are created by different transfer mechanisms.We show that the helical part of the coat protein undergoes a uniform small (∼30°) amplitude motion, while the N-terminus is highly flexible. In addition, our results suggest that the reduced mobility of lysine sidechains at the C-terminus are a signature of binding to the single stranded DNA.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3