Monocytes Mobilized by Gut Neurons Remodel the Enteric Nervous System

Author:

Kurapati Sravya,Shin Changsik,Szabo Krisztina,Liu Yu,Ashraf Azree Zaffran,Koscso Balazs,Dash Chinmayee,Navarro Leonardo,Saha Monalee,Nagaraj Sushma,Wang Wenhui,Zhu Jun,Shulzhenko Natalya,Baer Christina E.,Srinivasan Shanthi,Kulkarni Subhash,Pasricha Pankaj Jay,Peters Lauren A.,Bogunovic Milena

Abstract

ABSTRACTThe proper organization of the enteric nervous system (ENS) is critical for normal gastrointestinal (GI) physiology. Inflammatory bowel disease (IBD) dysregulates GI physiology, including bowel movements (motility), but in many IBD patients, GI motility disorders persist in remission through a poorly understood pathological process. Here we uncover that post-inflammatory GI dysmotility (PI-GID) stems from structural ENS remodeling driven by a combination of neuronal loss and neurogenesis. Enteric neurons respond to mucosal inflammation by upregulating CCL2 expression and facilitating the recruitment of CCR2+monocytes into the neural myenteric plexus within the intestinal muscle. This is followed by the expansion of monocyte-derived macrophages and their migration into the myenteric ganglia and phagocytosis of neurons. However, excessive recruitment of monocytes results in disproportionate ENS remodeling and PI-GID. The expansion of inflammatory cells is known to promote tissue hypoxia. We find that enteric neurons become hypoxic upon colitis, but hypoxia-induced signaling via HIF1α initiates an adaptation program in enteric neurons to attenuate CCL2 expression and limit monocyte recruitment. We demonstrate that reinforcing HIF1α signaling in enteric neurons prevents PI-GID by reducing colitis-associated monocyte recruitment in the myenteric plexus and protecting against ENS remodeling. In summary, our findings unveil PI-GID pathogenesis and identify a regulatory axis for its prevention.One Sentence SummaryIntestinal mucosal inflammation engages enteric neurons in the inflammatory response leading to neurogenic recruitment of monocytes into the extra-mucosal myenteric plexus followed by pathological structural remodeling of the enteric nervous system by monocyte-derived macrophages.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3