Hypoxia-Sonic Hedgehog Axis as a Driver of Primitive Hematopoiesis Development and Evolution in Cavefish

Author:

van der Weele Corine M.,Hospes Katrina C.,Rowe Katherine E.,Jeffery William R.ORCID

Abstract

AbstractThe teleostAstyanax mexicanusconsists of surface dwelling (surface fish) and cave dwelling (cavefish) forms. Cavefish have evolved in subterranean habitats characterized by reduced oxygen levels (hypoxia) and show constructive and regressive phenotypic traits controlled by increased Sonic hedgehog (Shh) signaling along the embryonic midline. The enhancement of primitive hematopoietic domains, which are formed bilaterally in the anterior and posterior lateral plate mesoderm, are responsible for the development of more larval erythrocytes in cavefish relative to surface fish. In this study, we determine the role of hypoxia and Shh signaling in the development and evolution of primitive hematopoiesis in cavefish. We show that hypoxia treatment during embryogenesis increases primitive hematopoiesis and erythrocyte development in surface fish. We also demonstrate that upregulation of Shh midline signaling by treatment with the Smoothened agonist SAG increases primitive hematopoiesis and erythrocyte development in surface fish, whereas Shh downregulation via treatment with the Smoothened inhibitor cyclopamine decreases these traits in cavefish. Together these results suggest that hematopoietic enhancement is regulated by hypoxia and the Shh signaling system. Lastly, we demonstrate that hypoxia treatment enhances expression of Shh signaling along the midline of surface fish embryos. Thus, we conclude that a hypoxia-Shh axis may drive the adaptive evolution of primitive hematopoiesis and erythrocyte development in cavefish.HighlightsHypoxia increases hematopoiesis and erythrocytes in surface fishShh upregulation increases hematopoiesis and erythrocytes in surface fishShh inhibition decreases hematopoiesis and erythrocytes in cavefishHypoxia upregulates Shh along the embryonic midline in surface fish

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3