Abstract
AbstractWe present a promising approach for detecting as few as 1% of rare leukemia cells during the early stages of blood cancers. This study demonstrates a novel microfluidic chip utilizing a bulk piezoelectric ceramic device to manipulate cells with sound waves. By analyzing the movement patterns of normal mononuclear cells (MNCs) and abnormal THP-1 acute myeloid leukemia (AML) cells within an acoustic field, we observed distinct behaviors. Our findings suggest a label-free, non-targeted approach for sensitive detection of rare abnormal cells within a mixed population. This method, based on acoustophoresis principles, holds promise for analyzing biophysical properties of individual cells for early cancer diagnosis, potentially leading to earlier intervention and improved patient outcomes for leukemia. While this study focuses on microscopic analysis, we also discuss the potential for developing large-scale acoustophoresis-based methods for high-throughput rare cell detection using high-resolution nanofabrication techniques.
Publisher
Cold Spring Harbor Laboratory