Neurotransmitter release is triggered by a calcium-induced rearrangement in the Synaptotagmin-1/SNARE complex primary interface

Author:

Toulmé EstelleORCID,Lázaro Andrea Salazar,Trimbuch Thorsten,Rizo JosepORCID,Rosenmund ChristianORCID

Abstract

AbstractThe Ca2+sensor synaptotagmin-1 triggers neurotransmitter release together with the neuronal SNARE complex formed by syntaxin-1, SNAP25 and synaptobrevin. Moreover, synaptotagmin-1 increases synaptic vesicle priming and impairs spontaneous vesicle release. The synaptotagmin-1 C2B domain binds to the SNARE complex through a primary interface via two regions (I and II), but how exactly this interface mediates distinct functions of synaptotagmin-1, and the mechanism underlying Ca2+-triggering of release is unknown. Using mutagenesis and electrophysiological experiments, we show that region II is functionally and spatially subdivided: binding of C2B domain arginines to SNAP-25 acidic residues at one face of region II is crucial for Ca2+-evoked release but not for vesicle priming or clamping of spontaneous release, whereas other SNAP-25 and syntaxin-1 acidic residues at the other face mediate priming and clamping of spontaneous release but not evoked release. Mutations that disrupt region I impair the priming and clamping functions of synaptotagmin-1 while, strikingly, mutations that enhance binding through this region increase vesicle priming and clamping of spontaneous release, but strongly inhibit evoked release and vesicle fusogenicity. These results support previous findings that the primary interface mediates the functions of synaptotagmin-1 in vesicle priming and clamping of spontaneous release, and, importantly, show that Ca2+-triggering of release requires a rearrangement of the primary interface involving dissociation of region I, while region II remains bound. Together with modeling and biophysical studies presented in the accompanying paper, our data suggest a model whereby this rearrangement pulls the SNARE complex to facilitate fast synaptic vesicle fusion.Significance statementThe synaptic SNARE complex and synaptotagmin-1 are required for fast neurotransmitter release. The functions of synaptotagmin-1 in preparing synaptic vesicles for fusion and executing the triggering step have been proposed to be regulated through interactions with the SNARE complex via the so-called primary interface. Using site-directed mutagenesis and functional analysis in neurons, we now show that synaptotagmin-1 mediates its release preparatory functions via two contact sites with the SNARE complex at this interface. During Ca2+triggering, synaptotagmin-1 continues to contact the SNAREs at one site but disconnects the other site. We propose that this switch generates a pulling force on the SNARE complex that in turn triggers release. Biochemical and modeling studies described in the accompanying paper support this hypothesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3