Imp and Sypin vivotemporal RNA interactomes uncover networks of temporal regulators ofDrosophilabrain development

Author:

Lee Jeffrey YORCID,Huang NilesORCID,Samuels Tamsin JORCID,Davis IlanORCID

Abstract

AbstractTemporal patterning of neural progenitors is an evolutionarily conserved mechanism generating neural diversity. InDrosophila, post-embryonic neurogenesis requires the RNA-binding proteins (RBPs) Imp/IGF2BP and Syp/SYNCRIP. However, how they co-achieve their function is not well understood. Here, we elucidate thein vivotemporal RNA interactome landscapes of Imp and Syp during larval brain development. Imp and Syp bind a highly overlapping set of conserved mRNAs encoding proteins involved in neurodevelopment. We identify transcripts differentially occupied by Imp/Syp over time, featuring a network of known and novel candidate temporal regulators that are post-transcriptionally regulated by Imp/Syp. Furthermore, the physical and co-evolutionary relationships between Imp and Syp binding sites reveal a combinatorial, rather than competitive, mode of molecular interplay. Our study establishes a newin vivoframework for dissecting the temporal co-regulation of RBP networks as well as providing a resource for understanding neural fate specification.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3