Nitazoxanide ameliorates OVA-induced airway inflammation in asthmatic mice via p38-MAPK/NFkB and AMPK/STAT3 pathways

Author:

Huang Zhuyun,Zhang Yanwen,Sun Yudi,Wang Qian,Men Zhonglan,Chu Fuao,Sun ShuangyongORCID

Abstract

AbstractNitazoxanide has an anti-inflammatory effect, we clarified the ameliorative effect of nitazoxanide on asthmatic airway inflammation by conducting in vitro and in vivo experiments. In vitro, we assessed the effect of nitazoxanide on cytokine production by lipopolysaccharide-stimulated RAW 264.7 cells, as well as the diastolic effect of nitazoxanide on isolated rat airways. Nitazoxanide was found to have a diastolic effect on isolated tracheal spasms caused by spasmogenic substances, and to inhibit IL-6 and IL-1β production by RAW 264.7 cells. Meanwhile, nitazoxanide can inhibit the proliferation and migration of human bronchial smooth muscle cells (HBSMCs). In vivo, an ovalbumin (OVA)-induced asthma model was established in mice, and the airway resistance was measured by Whole Body Plethysmography (WBP) after inhalation of acetylcholine in mice, and the levels of IL-4, IL-6, IL-12, and IL-17 were detected in bronchoalveolar lavage fluid (BALF) of mice by ELISA and the inflammatory cells were counted. H&E staining was used to observe the changes in lung histopathology, and the expression of NFkB, MAPK, AMPK, and STAT3 in lung tissues was quantified using Western-blot. Nitazoxanide reduced inflammatory cell infiltration and goblet cell proliferation in the lungs of asthmatic mice. Moreover, the expression of IL-4, IL-5, and IL-6 in BALF was down-regulated in asthmatic mice. In addition, nitazoxanide could inhibit the expression of NFkB, MAPK, STAT 3 proteins and ascend the expression of AMPK in lung tissues. In conclusion, nitazoxanide could diastole airway smooth muscle and ameliorate OVA-induced airway inflammation in asthmatic mice via NFkB/MAPK and AMPK/STAT3 pathways.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3