Predicting the effort required to manually mend auto-segmentations

Author:

He DaORCID,Udupa Jayaram K.,Tong YubingORCID,Torigian Drew A.

Abstract

AbstractAuto-segmentation is one of the critical and foundational steps for medical image analysis. The quality of auto-segmentation techniques influences the efficiency of precision radiology and radiation oncology since high-quality auto-segmentations usually require limited manual correction. Segmentation metrics are necessary and important to evaluate auto-segmentation results and guide the development of auto-segmentation techniques. Currently widely applied segmentation metrics usually compare the auto-segmentation with the ground truth in terms of the overlapping area (e.g., Dice Coefficient (DC)) or the distance between boundaries (e.g., Hausdorff Distance (HD)). However, these metrics may not well indicate the manual mending effort required when observing the auto-segmentation results in clinical practice.In this article, we study different segmentation metrics to explore the appropriate way of evaluating auto-segmentations with clinical demands. The mending time for correcting auto-segmentations by experts is recorded to indicate the required mending effort. Five well-defined metrics, the overlapping area-based metric DC, the segmentation boundary distance-based metric HD, the segmentation boundary length-based metrics surface DC (surDC) and added path length (APL), and a newly proposed hybrid metric Mendability Index (MI) are discussed in the correlation analysis experiment and regression experiment. In addition to these explicitly defined metrics, we also preliminarily explore the feasibility of using deep learning models to predict the mending effort, which takes segmentation masks and the original images as the input.Experiments are conducted using datasets of 7 objects from three different institutions, which contain the original computed tomography (CT) images, the ground truth segmentations, the auto-segmentations, the corrected segmentations, and the recorded mending time. According to the correlation analysis and regression experiments for the five well-defined metrics, the variety of MI shows the best performance to indicate the mending effort for sparse objects, while the variety of HD works best when assessing the mending effort for non-sparse objects. Moreover, the deep learning models could well predict efforts required to mend auto-segmentations, even without the need of ground truth segmentations, demonstrating the potential of a novel and easy way to evaluate and boost auto-segmentation techniques.

Publisher

Cold Spring Harbor Laboratory

Reference40 articles.

1. Medical image segmentation on GPUs–A comprehensive review;Medical image analysis,2015

2. Operations Useful for Similarity-Invariant Pattern Recognition

3. Some further experiments in the parallel processing of pictures;IEEE Trans Electron Comput,1963

4. Two- and three-dimensional boundary detection;Comput Graph Image Process,1977

5. Herman GT , Srihari S , Udupa JK . Detection of changing boundaries in two- and three-dimensions. In: Badler NI , Aggarwal JK , eds. Proceedings of the Workshop on Time Varying Imagery. University of Pennsylvania; 1979:14–16.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3