The Mlh1-Pms1 endonuclease uses ATP to preserve DNA discontinuities as strand discrimination signals to facilitate mismatch repair

Author:

Piscitelli Jonathan M.,Witte Scott J.,Sakinejad Yasmine S.,Manhart Carol M.ORCID

Abstract

ABSTRACTIn eukaryotic post-replicative mismatch repair, MutS homologs (MSH) detect mismatches and recruit MLH complexes to nick the newly replicated DNA strand upon activation by the replication processivity clamp, PCNA. This incision enables mismatch removal and DNA repair. Biasing MLH endonuclease activity to the newly replicated DNA strand is crucial for repair. In reconstitutedin vitroassays, PCNA is loaded at pre-existing discontinuities and orients the major MLH endonuclease Mlh1-Pms1/MLH1-PMS2 (yeast/human) to nick the discontinuous strand.In vivo,newly replicated DNA transiently contains discontinuities which are critical for efficient mismatch repair. How these discontinuities are preserved as strand discrimination signals during the window of time where mismatch repair occurs is unknown. Here, we demonstrate that yeast Mlh1-Pms1 uses ATP binding to recognize DNA discontinuities. This complex does not efficiently interact with PCNA, which partially suppresses ATPase activity, and prevents dissociation from the discontinuity. These data suggest that in addition to initiating mismatch repair by nicking newly replicated DNA, Mlh1-Pms1 protects strand discrimination signals, aiding in maintaining its own strand discrimination signposts. Our findings also highlight the significance of Mlh1-Pms1’s ATPase activity for inducing DNA dissociation, as mutant proteins deficient in this function become immobilized on DNA post-incision, explainingin vivophenotypes.GRAPHICAL ABSTRACT

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3