Temporal multi-omic analysis of COVID-19 in end-stage kidney disease

Author:

Stephenson EmilyORCID,Macdonald-Dunlop Erin,Dratva Lisa MORCID,Lindeboom Rik G.H.ORCID,Tuong Zewen KelvinORCID,Tun Win Min,Buang Norzawani BORCID,Ballereau Stephane,Cabantaus Mia,Peñalver Ana,Prigmore Elena,Ferdinand John R,Stewart Benjamin J,Gisby Jack,Malik Talat,Clarke Candice L,Medjeral-Thomas Nicholas,Prendecki Maria,McAdoo Stephen,Portet Anais,Willicombe Michelle,Sandhu Eleanor,Pickering Matthew C.,Botto MarinaORCID,Teichmann Sarah A.ORCID,Haniffa MuzlifahORCID,Clatworthy Menna R.ORCID,Thomas David C.,Peters James E.ORCID

Abstract

SummaryPatients with end-stage kidney disease (ESKD) are at high risk of severe COVID-19. We performed longitudinal single cell multi-omic immune profiling of ESKD patients with COVID- 19, sampled during two waves of the pandemic. Uniquely, for a subset of patients, we obtained samples before and during acute infection, allowing intra-individual comparison. Using single- cell transcriptome, surface proteome and immunoreceptor sequencing of 580,040 high-quality cells, derived from 187 longitudinal samples from 61 patients, we demonstrate widespread changes following infection. We identified gene expression signatures of severity, with the majority of pathways differentiating mild from severe disease in B cells and monocytes. For example, gene expression ofPLAC8, a receptor known to modulate SARS-CoV-2 entry to cells, was a marker of severity in CD14+ monocytes. Longitudinal profiling demonstrated distinct temporal molecular trajectories in severe versus mild disease, including type 1 and type 2 interferon signalling,MHCgene expression and, in B cells, a proliferative signature (KRASandMYC). Evaluation of clonal T cell dynamics showed that the fastest expanding clones were significantly enriched in known SARS-CoV-2 specific sequences and shared across multiple patients. Our analyses revealed novel TCR clones likely reactive to SARS- CoV-2. Finally, we identified a population of transcriptionally distinct monocytes that emerged in peripheral blood following glucocorticoid treatment. Overall, our data delineate the temporal dynamics of the immune response in COVID-19 in a high-risk population and provide a valuable open-access resource.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3