Advances in methods for characterizing dietary patterns: A scoping review

Author:

Hutchinson Joy M.ORCID,Raffoul AmandaORCID,Pepetone Alexandra,Andrade Lesley,Williams Tabitha E.,McNaughton Sarah A.ORCID,Leech Rebecca M.ORCID,Reedy Jill,Shams-White Marissa M.ORCID,Vena Jennifer E.,Dodd Kevin W.,Bodnar Lisa M.ORCID,Lamarche BenoîtORCID,Wallace Michael P.,Deitchler Megan,Hussain Sanaa,Kirkpatrick Sharon I.ORCID

Abstract

AbstractThere is a growing focus on better understanding the complexity of dietary patterns and how they relate to health and other factors. Approaches that have not traditionally been applied to characterize dietary patterns, such as machine learning algorithms and latent class analysis methods, may offer opportunities to measure and characterize dietary patterns in greater depth than previously considered. However, there has not been a formal examination of how this wide range of approaches has been applied to characterize dietary patterns. This scoping review synthesized literature from 2005-2022 applying methods not traditionally used to characterize dietary patterns, referred to as novel methods. MEDLINE, CINAHL, and Scopus were searched using keywords including machine learning, latent class analysis, and least absolute shrinkage and selection operator (LASSO). Of 5274 records identified, 24 met the inclusion criteria. Twelve of 24 articles were published since 2020. Studies were conducted across 17 countries. Nine studies used approaches that have applications in machine learning to identify dietary patterns. Fourteen studies assessed associations between dietary patterns that were characterized using novel methods and health outcomes, including cancer, cardiovascular disease, and asthma. There was wide variation in the methods applied to characterize dietary patterns and in how these methods were described. The extension of reporting guidelines and quality appraisal tools relevant to nutrition research to consider specific features of novel methods may facilitate complete and consistent reporting and enable evidence synthesis to inform policies and programs aimed at supporting healthy dietary patterns.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3