Passive droplet microfluidic platform for high-throughput screening of microbial proteolytic activity

Author:

Potenza Luca,Kozon ŁukaszORCID,Drewniak LukaszORCID,Kaminski Tomasz S.ORCID

Abstract

ABSTRACTTraditional bacterial isolation methods are often costly, have limited throughput, and may not accurately reflect the true microbial community composition. Consequently, identifying rare or slow-growing taxa becomes challenging. Over the last decade, a new approach has been proposed to replace traditional flasks or multi-well plates with ultrahigh-throughput droplet microfluidic screening assays. In this study, we present a novel passive droplet-based method designed for isolating proteolytic microorganisms, which are crucial in various biotechnology industries. Following the encapsulation of single cells in gelatin microgel compartments and their subsequent clonal cultivation, microcultures are passively sorted at high throughput based on the deformability of droplets. Our novel chip design offers a 50-fold improvement in throughput compared to previously developed deformability-based droplet sorter. This method expands an array of droplet-based microbial enrichment assays and significantly reduces the time and resources required to isolate proteolytic bacteria strains.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3