PAM: Predictive Attention Mechanism for Neural Decoding of Visual Perception

Author:

Dado ThirzaORCID,Le Lynn,van Gerven Marcel,Güçlütürk Yağmur,Güçlü Umut

Abstract

AbstractAttention mechanisms enhance deep learning models by focusing on the most relevant parts of the input data. We introduce predictive attention mechanisms (PAMs) – a novel approach that dynamically derives queries during training which is beneficial when predefined queries are unavailable. We applied PAMs to neural decoding, a field challenged by the inherent complexity of neural data that prevents access to queries. Concretely, we designed a PAM to reconstruct perceived images from brain activity via the latent space of a generative adversarial network (GAN). We processed stimulus-evoked brain activity from various visual areas with separate attention heads, transforming it into a latent vector which was then fed to the GAN’s generator to reconstruct the visual stimulus. Driven by prediction-target discrepancies during training, PAMs optimized their queries to identify and prioritize the most relevant neural patterns that required focused attention. We validated our PAM with two datasets: the first dataset (B2G) with GAN-synthesized images, their original latents and multi-unit activity data; the second dataset (GOD) with real photographs, their inverted latents and functional magnetic resonance imaging data. Our findings demonstrate state-of-the-art reconstructions of perception and show that attention weights increasingly favor downstream visual areas. Moreover, visualizing the values from different brain areas enhanced interpretability in terms of their contribution to the final image reconstruction. Interestingly, the values from downstream areas (IT for B2G; LOC for GOD) appeared visually distinct from the stimuli despite receiving the most attention. This suggests that these values help guide the model to important latent regions, integrating information necessary for high-quality reconstructions. Taken together, this work advances visual neuroscience and sets a new standard for machine learning applications in interpreting complex data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3