Denoising Longitudinal Social Media for Pandemic Monitoring

Author:

Lin ShixuORCID,Garay Lucas,Hua YiningORCID,Guo Zhijiang,Xu Xiaolin,Yang JieORCID

Abstract

AbstractObjectiveCurrent studies leveraging social media data for disease monitoring face challenges like noisy colloquial language and insufficient tracking of user disease progression in longitudinal data settings. This study aims to develop a pipeline for collecting, cleaning, and analyzing large-scale longitudinal social media data for disease monitoring, with a focus on COVID-19 pandemic.Materials and MethodsThis pipeline initiates by screening COVID-19 cases from tweets spanning February 1, 2020, to April 30, 2022. Longitudinal data is collected for each patient, two months before and three months after self-reporting. Symptoms are extracted using Name Entity Recognition (NER), followed by denoising with a combination of Graph Convolutional Network (GCN) and Bidirectional Encoder Representations from Transformers (BERT) model to retain only User Symptom Mentions (USM). Subsequently, symptoms are mapped to standardized medical concepts using the Unified Medical Language System (UMLS). Finally, this study conducts symptom pattern analysis and visualization to illustrate temporal changes in symptom prevalence and co-occurrence.ResultsThis study identified 191,096 self-reported COVID-19-positive cases from COVID-19-related tweets and retrospectively collected 811,398,280 historical tweets, of which 2,120,964 contained symptoms information. After denoising, 39% (832,287) of symptom-sharing tweets reflected user-related mentions. The trained USM model achieved an F1 score of 0.926. Further analysis revealed a higher prevalence of upper respiratory tract symptoms during the Omicron period compared to the Delta and wild-type periods. Additionally, there was a pronounced co-occurrence of lower respiratory tract and nervous system symptoms in the wild-type strain and Delta variant.ConclusionThis study established a robust framework for pandemic monitoring via social media, integrating denoising of user-related symptom mentions and longitudinal data. The findings underscore the importance of denoising procedures in revealing accurate prevalence trends, thereby minimizing biases in symptom analysis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3