Assessing the potential of ChatGPT-4 to accurately identify drug-drug interactions and provide clinical pharmacotherapy recommendations

Author:

Most Amoreena,Chase Aaron,Sikora Andrea

Abstract

AbstractBackgroundLarge language models (LLMs) such as ChatGPT have emerged as promising artificial intelligence tools to support clinical decision making. The ability of ChatGPT to evaluate medication regimens, identify drug-drug interactions (DDIs), and provide clinical recommendations is unknown. The purpose of this study is to examine the performance of GPT-4 to identify clinically relevant DDIs and assess accuracy of recommendations provided.MethodsA total of 15 medication regimens were created containing commonly encountered DDIs that were considered either clinically significant or clinically unimportant. Two separate prompts were developed for medication regimen evaluation. The primary outcome was if GPT-4 identified the most relevant DDI within the medication regimen. Secondary outcomes included rating GPT-4’s interaction rationale, clinical relevance ranking, and overall clinical recommendations. Interrater reliability was determined using kappa statistic.ResultsGPT-4 identified the intended DDI in 90% of medication regimens provided (27/30). GPT-4 categorized 86% as highly clinically relevant compared to 53% being categorized as highly clinically relevant by expert opinion. Inappropriate clinical recommendations potentially causing patient harm were provided in 14% of responses provided by GPT-4 (2/14), and 63% of responses contained accurate information but incomplete recommendations (19/30).ConclusionsWhile GPT-4 demonstrated promise in its ability to identify clinically relevant DDIs, application to clinical cases remains an area of investigation. Findings from this study may assist in future development and refinement of LLMs for drug-drug interaction queries to assist in clinical decision-making.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3