ADM: Adaptive Graph Diffusion for Meta-Dimension Reduction

Author:

Feng Junning,Liang Yong,Yu Tianwei

Abstract

AbstractDimension reduction is ubiquitous in high dimensional data analysis. Divergent data characteristics have driven the development of various techniques in this field. Although individual techniques can capture specific aspects of data, they often struggle to grasp all the intricate and complex patterns and structures. To address this limitation, we introduceADM (Adaptive graph Diffusion for Metadimension reduction), a novel meta-dimension reduction method grounded in graph diffusion theory. ADM integrates results from diverse dimension reduction techniques to leverage the unique strength of each individual technique. By employing dynamic Markov processes, ADM simulates information propagation for each dimension reduction result, thereby transforming traditional spatial measurements into dynamic diffusion distances. Importantly, ADM incorporates an adaptive mechanism to tailor the time scale of information diffusion according to sample-specific attributes. This improvement facilitates a more thorough exploration of the dataset’s overall structure and allows the heterogeneity among samples.

Publisher

Cold Spring Harbor Laboratory

Reference47 articles.

1. 50 years of data science;Journal of Computational and Graphical Statistics,2017

2. Umap: Uniform manifold approximation and projection for dimension reduction;arXiv preprint,2018

3. How to use t-sne effectively;Distill,2016

4. Understanding how dimension reduction tools work: an empirical approach to deciphering t-sne, umap, trimap, and pacmap for data visualization;Journal of Machine Learning Research,2021

5. Silhouette Analysis for Human Action Recognition Based on Supervised Temporal t-SNE and Incremental Learning

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3