MICAL2 Is a Super Enhancer Associated Gene that Promotes Pancreatic Cancer Growth and Metastasis

Author:

Garg Bharti,Khan Sohini,Babu Deepa Sheikh,Mose Evangeline,Gulay Kevin,Sharma Shweta,Sood Divya,Wenzel Alexander T.,Martsinkovskiy Alexei,Patel Jay,Jaquish Dawn,Lambies Guillem,D’Ippolito Anthony,Austgen Kathryn,Johnston Brian,Orlando David,Jang Gung Ho,Gallinger Steven,Goodfellow Elliot,Brodt Pnina,Commisso Cosimo,Tamayo Pablo,Mesirov Jill P.,Tiriac HerveORCID,Lowy Andrew M.

Abstract

ABSTRACTPancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid cancers and thus identifying more effective therapies is a major unmet need. In this study we characterized the super enhancer (SE) landscape of human PDAC to identify novel, potentially targetable, drivers of the disease. Our analysis revealed thatMICAL2is a super enhancer-associated gene in human PDAC. MICAL2 is a flavin monooxygenase that induces actin depolymerization and indirectly promotes SRF transcription by modulating the availability of serum response factor coactivators myocardin related transcription factors (MRTF-A and MRTF-B). We found that MICAL2 is overexpressed in PDAC and correlates with poor patient prognosis. Transcriptional analysis revealed that MICAL2 upregulates KRAS and EMT signaling pathways, contributing to tumor growth and metastasis. In loss and gain of function experiments in human and mouse PDAC cells, we observed that MICAL2 promotes both ERK1/2 and AKT activation. Consistent with its role in actin depolymerization and KRAS signaling, loss of MICAL2 expression also inhibited macropinocytosis. Throughin vitrophenotypic analyses, we show that MICAL2, MRTF-A and MRTF-B influence PDAC cell proliferation, migration and promote cell cycle progression. Importantly, we demonstrate that MICAL2 is essential forin vivotumor growth and metastasis. Interestingly, we find that MRTF-B, but not MRTF-A, phenocopies MICAL2-driven phenotypesin vivo. This study highlights the multiple ways in which MICAL2 impacts PDAC biology and suggests that its inhibition may impede PDAC progression. Our results provide a foundation for future investigations into the role of MICAL2 in PDAC and its potential as a target for therapeutic intervention.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3