Profiling endogenous airway proteases and antiproteases and measuring proteolytic activation of Influenza HA usingin vitroandex vivohuman airway surface liquid samples

Author:

Brocke Stephanie A,Reidel Boris,Ehre Camille,Rebuli Meghan E,Robinette Carole,Schichlein Kevin D,Brooks Christian A,Jaspers IlonaORCID

Abstract

AbstractImbalance of airway proteases and antiproteases has been implicated in diseases such as COPD and environmental exposures including cigarette smoke and ozone. To initiate infection, endogenous proteases are commandeered by respiratory viruses upon encountering the airway epithelium. The airway proteolytic environment likely contains redundant antiproteases and proteases with diverse catalytic mechanisms, however a proteomic profile of these enzymes and inhibitors in airway samples has not been reported. The objective of this study was to first profile extracellular proteases and antiproteases using human airway epithelial cell cultures andex vivonasal epithelial lining fluid (NELF) samples. Secondly, we present an optimized method for probing the proteolytic environment of airway surface liquid samples (in vitroandex vivo) using fluorogenic peptides modeling the cleavage sites of respiratory viruses. We detected 48 proteases in the apical wash of cultured human nasal epithelial cells (HNECs) (n=6) and 57 in NELF (n=13) samples from healthy human subjects using mass-spectrometry based proteomics. Additionally, we detected 29 and 48 antiproteases in the HNEC apical washes and NELF, respectively. We observed large interindividual variability in rate of cleavage of an Influenza H1 peptide in theex vivoclinical samples. Since protease and antiprotease levels have been found to be altered in the airways of smokers, we compared proteolytic cleavage inex vivonasal lavage samples from male/female smokers and non-smokers. There was a statistically significant increase in proteolysis of Influenza H1 in NLF from male smokers compared to female smokers. Furthermore, we measured cleavage of the S1/S2 site of SARS-CoV, SARS-CoV-2, and SARS-CoV-2 Delta peptides in various airway samples, suggesting the method could be used for other viruses of public health relevance. This assay presents a direct and efficient method of evaluating the proteolytic environment of human airway samples in assessment of therapeutic treatment, exposure, or underlying disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3