Abstract
AbstractThe acidic tumor microenvironment favors cancer aggressiveness via incompletely understood pathways. Here, we asked whether acidic environments select for cancer stem cell (CSC) properties. Bulk RNA-seq of Panc-1 human pancreatic cancer cells adapted to extracellular pH 6.5 revealed upregulation of CSC markers including CD44, EpCam, Nestin and aldehyde dehydrogenases, and CSC pathway enrichment. We therefore assessed CSC characteristics of acid-adapted (AA) and non-adapted (Ctrl) PaTu8988s and MiaPaca-2 pancreatic cancer cells. Compared to Ctrl, AA cells exhibited increased ALDH- and β-catenin activity and pancreatosphere-forming efficiency, classical CSC characteristics. Panc-1, PaTu8988s and MiaPaCa-2 AA cells differed in CSC marker expression, and AA cells did not exhibit typical flow cytometric CSC populations. However, single-nucleus sequencing identified the acid adaptation-induced emergence of a population with clear CSC characteristics. Finally, in an orthotopic mouse model, AA Panc-1 cells drove strongly increased aggressiveness and liver metastasis compared to Ctrl cells.We conclude that acid-adaptation of pancreatic cancer cells leads to enrichment of a CSC phenotype with unusual traits, providing new insight into how acidic tumor microenvironments favor cancer aggressiveness.
Publisher
Cold Spring Harbor Laboratory