A computational approach to understanding effort-based decision-making in depression

Author:

Valton VincentORCID,Mkrtchian AnahitORCID,Moses-Payne MadeleineORCID,Gray Alan,Kieslich KarelORCID,VanUrk Samantha,Samborska VeronikaORCID,Halahakoon Don,Manohar Sanjay G.ORCID,Dayan Peter,Husain MasudORCID,Roiser Jonathan P.ORCID

Abstract

AbstractBackgroundMotivational dysfunction is a core feature of depression, and can have debilitating effects on everyday function. However, it is unclear which disrupted cognitive processes underlie impaired motivation, and whether impairments persist following remission. Decision-making concerning exerting effort to collect rewards offers a promising framework for understanding motivation, especially when examined with computational tools which can offer precise quantification of latent processes.MethodsEffort-based decision-making was assessed using the Apple Gathering Task, in which participants decide whether to exert effort via a grip-force device to obtain varying levels of reward; effort levels were individually calibrated and varied parametrically. We present a comprehensive computational analysis of decision-making, initially validating our model in healthy volunteers (N=67), before applying it in a case-control study including current (N=41) and remitted (N=46) unmedicated depressed individuals, and healthy volunteers with (N=36) and without (N=57) a family history of depression.ResultsFour fundamental computational mechanisms that drive patterns of effort-based decisions, which replicated across samples, were identified: an overall bias to accept effort challenges; reward sensitivity; and linear and quadratic effort sensitivity. Traditional model-agnostic analyses showed that both depressed groups showed lower willingness to exert effort. In contrast with previous findings, computational analysis revealed that this difference was driven by lower effort acceptance bias, but not altered effort or reward sensitivity.ConclusionsThis work provides insight into the computational mechanisms underlying motivational dysfunction in depression. Lower willingness to exert effort could represent a trait-like factor contributing to symptoms, and might represent a fruitful target for treatment and prevention.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3