Altered thymic niche synergistically drives the massive proliferation of malignant thymocytes

Author:

Tsingos ErikaORCID,Dick Advaita M.ORCID,Bajoghli BaubakORCID

Abstract

ABSTRACTThe discovery of genetic alterations in patient samples over the last 20 years has promoted a cell-autonomous view of proliferative expansion during T-cell acute lymphoblastic leukemia (T-ALL) development in the thymus. However, the potential contribution of non-cell-autonomous factors, particularly the impact of thymic epithelial cells (TECs) within the thymic niche during the initiation phase, remains unexplored. In this study, we employ a unique combination of a cell-based computational model of the thymus andin vivoexperiments. We systematically analyze the impact of 12 cell-autonomous and non-autonomous factors, either alone or in combinations, on the proliferation of normal and malignant thymocytes with interleukin-7 receptor (IL7R) gain-of-function mutations or elevated IL7R levels, as observed in T-ALL patients. By simulating over 1500 scenarios, we show that while a dense TEC network favored the proliferation of normal thymocytes, it inhibited the proliferation of malignant lineages, which achieved their maximal proliferative capacity when TECs were sparsely distributed. Ourin silicomodel predicts that certain mutations could accelerate proliferative expansion within a few days. This was experimentally validated, revealing rapid onset of thymus lymphoma and infiltration of malignant T-cells into other organs within 8 days of medaka (Oryzias latipes) embryonic development, thus revealing that modifications in the thymic niche and oncogenes in thymocytes together accelerate the disease development. Our results also suggest that negative feedback from the proliferative state inhibits differentiation of thymocytes, thereby prolonging the proliferative state and further fueling malignant expansion. Overall, this work reveals the critical impact of TEC-thymocyte interactions in both the initiation and progression of disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3