Deep learning of SARS-CoV-2 outbreak phylodynamics with contact tracing data

Author:

Xie Ruopeng,Adam Dillon C.,Hu Shu,Cowling Benjamin J.,Gascuel Olivier,Zhukova Anna,Dhanasekaran Vijaykrishna

Abstract

AbstractDeep learning has emerged as a powerful tool for phylodynamic analysis, addressing common computational limitations affecting existing methods. However, notable disparities exist between simulated phylogenetic trees used for training existing deep learning models and those derived from real-world sequence data, necessitating a thorough examination of their practicality. We conducted a comprehensive evaluation of model performance by assessing an existing deep learning inference tool for phylodynamics, PhyloDeep, against realistic phylogenetic trees characterized from SARS-CoV-2. Our study reveals the poor predictive accuracy of PhyloDeep models trained on simulated trees when applied to realistic data. Conversely, models trained on realistic trees demonstrate improved predictions, despite not being infallible, especially in scenarios where superspreading dynamics are challenging to capture accurately. Consequently, we find markedly improved performance through the integration of minimal contact tracing data. Applying this approach to a sample of SARS-CoV-2 sequences partially matched to contact tracing from Hong Kong yields informative estimates of SARS-CoV-2 superspreading potential beyond the scope of contact tracing data alone. Our findings demonstrate the potential for enhancing deep learning phylodynamic models processing low resolution trees through complementary data integration, ultimately increasing the precision of epidemiological predictions crucial for public health decision making and outbreak control.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3