Effective anti-tumor immune response against HCC is orchestrated by immune cell partnership network that functions through hepatic homeostatic pathways, not direct cytotoxicity

Author:

Koelsch Nicholas,Mirshahi Faridoddin,Aqbi Hussein F.,Saneshaw Mulugeta,Idowu Michael O.,Olex Amy L.ORCID,Sanyal Arun J.ORCID,Manjili Masoud H.ORCID

Abstract

AbstractThe liver harbors a diverse array of immune cells during both health and disease. The specific roles of these cells in nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC) remain unclear. Using a systems immunology approach, we demonstrate that reciprocal cell-cell communications function through dominant-subdominant pattern of ligand-receptor homeostatic pathways. In the healthy control, hepatocyte-dominated homeostatic pathways induce local immune responses to maintain liver homeostasis. Chronic intake of a Western diet (WD) alters hepatocytes and induces hepatic stellate cell (HSC), cancer cell and NKT cell-dominated interactions during NAFLD. During HCC, monocytes, hepatocytes, and myofibroblasts join the dominant cellular interactions network to restore liver homeostasis. Dietary correction during NAFLD results in nonlinear outcomes with various cellular rearrangements. When cancer cells and stromal cells dominate hepatic interactions network without inducing homeostatic immune responses, HCC progression occurs. Conversely, myofibroblast and fibroblast-dominated network orchestrates monocyte-dominated HCC-preventive immune responses. Tumor immune surveillance by 75% of immune cells successfully promoting liver homeostasis can create a tumor-inhibitory microenvironment, while only 5% of immune cells manifest apoptosis-inducing functions, primarily for facilitating homeostatic liver cell turnover rather than direct tumor killing. These data suggest that an effective immunotherapy should promote liver homeostasis rather than direct tumor killing.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3