Long-term maintenance of patient-specific characteristics in tumoroids from six cancer indications in a common base culture media system

Author:

Paul Colin D.,Yankaskas Chris,Shahi Thakuri Pradip,Balhouse Brittany,Salen Shyanne,Bullock Amber,Beam Sylvia,Chatman Anthony,Djikeng Sybelle,Yang Jenny,Wong Garrett,Dey Isha,Holmes Spencer,Dockey Abigail,Bailey-Steinitz Lindsay,Zheng Lina,Li Weizhong,Chandra Vivek,Nguyen Jakhan,Sharp Jason,Willems Erik,Kennedy Mark,Dallas Matt,Kuninger David

Abstract

AbstractTumoroids, also known as cancer organoids, are patient-derived cancer cells grown as 3D, self-organized multicellular structures that maintain key characteristics (e.g., genotype, gene expression levels) of the tumor from which they originated. These models have emerged as valuable tools for studying tumor biology, cytotoxicity, and response of patient-derived cells to cancer therapies. However, the establishment and maintenance of tumoroids has historically been challenging, labor intensive, and highly variable from lab to lab, hindering their widespread use. Here, we characterize the establishment and/or expansion of colorectal, lung, head and neck, breast, pancreas, and endometrial tumoroids using the standardized, serum-free Gibco OncoPro Tumoroid Culture Medium. Newly derived tumoroid lines (n=20) were analyzed by targeted genomic profiling and RNA sequencing and were representative of tumor tissue samples. Tumoroid lines were stable for over 250 days in culture and freeze-thaw competent. Previously established tumoroid lines were also transitioned to OncoPro medium and exhibited, on average, similar growth rates and conserved donor-specific characteristics when compared to original media systems. Additionally, OncoPro medium was compatible with both embedded culture in extracellular matrix and growth in a suspension format for facile culture and scale up. An example application of these models for assessing the cytotoxicity of a natural killer cell line and primary natural killer cells over time and at various doses demonstrated the compatibility of these models with assays used in compound and cell therapy development. We anticipate that the standardization and versatility of this approach will have important benefits for basic cancer research, drug discovery, and personalized medicine and help make tumoroid models more accessible to the cancer research community.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3