Abstract
AbstractWe investigate the use of competitive co-evolution for synthesizing progressively better solutions. Specifically, we introduce a set of methods to measure historical and global progress. We discuss the factors that facilitate genuine progress. Finally, we compare the efficacy of four qualitatively different algorithms. The selected algorithms promote genuine progress by creating an archive of opponents used to evaluate evolving individuals, generating archives that include high-performing and well-differentiated opponents, identifying and discarding variations that lead to local progress only (i.e. progress against a subset of possible opponents and retrogressing against a larger set). The results obtained in a predator-prey scenario, commonly used to study competitive evolution, demonstrate that all the considered methods lead to global progress in the long term. However, the rate of progress and the ratio of progress versus retrogressions vary significantly among algorithms.
Publisher
Cold Spring Harbor Laboratory