An improved method for sampling and quantitative protein analytics of cerebrospinal fluid of single mice

Author:

Lourbopoulos Athanasios,Müller Stephan A.,Jocher Georg,Wick Manfred,Plesnila Nikolaus,Lichtenthaler Stefan F.

Abstract

AbstractMice are the most commonly used preclinical animal model, but protein analytics of murine cerebrospinal fluid (CSF) remains challenging because of low CSF volume (often <10 µl) and frequent blood contaminations. We developed an improved CSF sampling method that allows routine collection of increased volumes (20-30 µl) of pure CSF from individual mice, enabling multiple protein analytical assays from a single sample. Based on cell counts and hemoglobin ELISAs, we provide an easy quality control workflow for obtaining cell- and blood-free murine CSF. Through mass spectrometry-based proteomics using an absolutely quantified external standard, we estimated concentrations for hundreds of mouse CSF proteins. While repeated CSF sampling from the same mouse was possible, it induced CSF proteome changes. Applying the improved method, we found that the mouse CSF proteome remains largely stable over time in wild-type mice, but that amyloid pathology in the 5xFAD mouse model of Alzheimer’s disease massively changes the CSF proteome. Neurofilament light chain and TREM2, markers of neurodegeneration and activated microglia, respectively, were strongly upregulated and validated using immunoassays. In conclusion, our refined murine CSF collection method overcomes previous limitations, allowing multiple quantitative protein analyses for applications in biomedicine.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3