SpyDen: Automating molecular and structural analysis across spines and dendrites

Author:

Eggl Maximilian F.ORCID,Wagle SurbhitORCID,Filling Jean P.,Chater Thomas E.ORCID,Goda YukikoORCID,Tchumatchenko TatjanaORCID

Abstract

AbstractInvestigating the molecular composition across neural compartments such as axons, dendrites, or synapses is critical for our understanding of learning and memory. State-of-the-art microscopy techniques can now resolve individual molecules and pinpoint their position with micrometre or even nanometre resolution across tens or hundreds of micrometres, allowing the labelling of multiple structures of interest simultaneously. Algorithmically, tracking individual molecules across hundreds of micrometres and determining whether they are inside any cellular compartment of interest can be challenging. Historically, microscopy images are annotated manually, often using multiple software packages to detect fluorescence puncta (e.g. labelled mRNAs) and then trace and quantify cellular compartments of interest. Advanced ANN-based automated tools, while powerful, are often able to help only with selected parts of the data analysis pipeline, may be optimised for specific spatial resolutions or cell preparations or may not be fully open source and open access to be sufficiently customisable. To address these challenges, we developed SpyDen. SpyDen is a Python package based upon three principles:i)ease of use for multi-task scenarios,ii)open-source accessibility and data export to a common, open data format,iii)the ability to edit any software-generated annotation and generalise across spatial resolutions. Equipped with a graphical user interface and accompanied by video tutorials, SpyDen provides a collection of powerful algorithms that can be used for neurite and synapse detection as well as fluorescent puncta and intensity analysis. We validated SpyDen using expert annotation across numerous use cases to prove a powerful, integrated platform for efficient and reproducible molecular imaging analysis.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3