The Role of Alpha-Synuclein in Synucleinopathy: Impact on Lipid Regulation at Mitochondria–ER Membranes

Author:

Barbuti Peter A.ORCID,Guardia-Laguarta CristinaORCID,Yun Taekyung,Chatila Zena K.ORCID,Flowers Xena.,Santos Bruno FR.,Larsen Simone B.,Hattori NobutakaORCID,Bradshaw ElizabethORCID,Dettmer UlfORCID,Fanning SarannaORCID,Vilas Manon,Reddy Hasini,Teich Andrew F.ORCID,Krüger RejkoORCID,Area-Gomez EstelaORCID,Przedborski SergeORCID

Abstract

AbstractThe protein alpha-synuclein (αSyn) plays a critical role in the pathogenesis of synucleinopathy, which includes Parkinson’s disease and multiple system atrophy, and mounting evidence suggests that lipid dyshomeostasis is a critical phenotype in these neurodegenerative conditions. Previously, we identified that αSyn localizes to mitochondria-associated endoplasmic reticulum membranes (MAMs), temporary functional domains containing proteins that regulate lipid metabolism, including the de novo synthesis of phosphatidylserine. In the present study, we have analyzed the lipid composition of postmortem human samples, focusing on the substantia nigra pars compacta of Parkinson’s disease and controls, as well as three less affected brain regions of Parkinson’s donors. To further assess synucleinopathy-related lipidome alterations, similar analyses were performed on the striatum of multiple system atrophy cases. Our data show region-and disease-specific changes in the levels of lipid species. Specifically, our data revealed alterations in the levels of specific phosphatidylserine species in brain areas most affected in Parkinson’s disease. Some of these alterations, albeit to a lesser degree, are also observed multiples system atrophy. Using induced pluripotent stem cell-derived neurons, we show that αSyn contributes to regulating phosphatidylserine metabolism at MAM domains, and that αSyn dosage parallels the perturbation in phosphatidylserine levels. Our results support the notion that αSyn pathophysiology is linked to the dysregulation of lipid homeostasis, which may contribute to the vulnerability of specific brain regions in synucleinopathy. These findings have significant therapeutic implications.Significance StatementSynucleinopathy is a complex group of neurodegenerative disorders whose causes and underlying mechanisms remain unknown. In this work, we examined synucleinopathy postmortem brain samples and patient-derived neuron models and identified the functional impairment of the mitochondrial-associated endoplasmic reticulum membrane (MAM) domain, which facilitates lipid regulation. The protein alpha-synuclein is associated with synucleinopathy and increasing levels result in the mislocalization of this protein and the disruption of MAM domains, which, in turn, results in lipid and membrane composition alterations. Specifically, we report that increased alpha-synuclein expression impairs the regulation of phosphatidylserine synthase 2 and the levels of phosphatidylserine in cellular membranes from affected cells. Our study offers mechanistic insight tying alpha-synuclein pathology and lipid dysregulation as seminal factors in synucleinopathy, which may have pathogenic and therapeutic implications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3