Transcription templated assembly of the nucleolus in theC. elegansembryo

Author:

Kodan Nishant,Hussaini Rabeya,Weber Stephanie C.ORCID,Kondev Jane,Mohapatra Lishibanya

Abstract

AbstractThe nucleolus is a multicomponent structure made of RNA and proteins that serves as the site of ribosome biogenesis within the nucleus. It has been extensively studied as a prototype of a biomolecular condensate whose assembly is driven by phase separation. While the steady-state size of the nucleolus is quantitatively accounted for by the thermodynamics of phase separation, we show that experimental measurements of the assembly dynamics are inconsistent with a simple model of a phase-separating system relaxing to its equilibrium state. Instead, we show that the dynamics are well described by a model in which the transcription of ribosomal RNA actively drives nucleolar assembly. We find that our model of active transcription-templated assembly quantitatively accounts for the rapid kinetics observed in early embryos at different developmental stages, and for different RNAi perturbations of embryo size. Our model predicts a scaling of the time to assembly with the volume of the nucleus to the one-third power, which is confirmed by experimental data. Our study highlights the role of active processes such as transcription in controlling the placement and timing of assembly of membraneless organelles.Significance statementHow membraneless organelles like nucleolus assemble within cells is not well understood. Recent experiments suggest that transcription of ribosomal RNA actively drives nucleolar assembly. Our proposed model of active transcription-templated assembly quantitatively accounts for the rapid kinetics observed in early worm embryos at different developmental stages. Further, it predicts a scaling of the time to assembly with the volume of the nucleus that is confirmed by experimental data. This work describes how active processes such as transcription can control the placement and timing of assembly of membraneless organelles.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3