Inferring single-cell spatial gene expression with tissue morphology via explainable deep learning

Author:

Zhao Yue,Alizadeh Elaheh,Liu YangORCID,Xu Ming,Mahoney J Matthew,Li Sheng

Abstract

AbstractThe spatial arrangement of cells is vital in developmental processes and organogenesis in multicellular life forms. Deep learning models trained with spatial omics data uncover complex patterns and relationships among cells, genes, and proteins in a high-dimensional space, providing new insights into biological processes and diseases. State-of-the-artin silicospatialmulti-cellgene expression methods using histological images of tissue stained with hematoxylin and eosin (H&E) to characterize cellular heterogeneity. These computational techniques offer the advantage of analyzing vast amounts of spatial data in a scalable and automated manner, thereby accelerating scientific discovery and enabling more precise medical diagnostics and treatments.In this work, we developed a vision transformer (ViT) framework to map histological signatures to spatialsingle-celltranscriptomic signatures, named SPiRiT (Spatial OmicsPrediction andReproducibility integratedTransformer). Our framework was enhanced by integrating cross validation with model interpretation during hyper-parameter tuning. SPiRiT predicts single-cell spatial gene expression using the matched histopathological image tiles of human breast cancer and whole mouse pup, evaluated by Xenium (10x Genomics) datasets. Furthermore, ViT model interpretation reveals the high-resolution, high attention area (HAR) that the ViT model uses to predict the gene expression, including marker genes for invasive cancer cells (FASN), stromal cells (POSTN), and lymphocytes (IL7R). In an apple-to-apple comparison with the ST-Net Convolutional Neural Network algorithm, SPiRiT improved predictive accuracy by 40% using human breast cancer Visium (10x Genomics) dataset. Cancer biomarker gene prediction and expression level are highly consistent with the tumor region annotation. In summary, our work highlights the feasibility to infer spatial single-cell gene expression using tissue morphology in multiple-species, i.e., human and mouse, and multi-organs, i.e., mouse whole body morphology. Importantly, incorporating model interpretation and vision transformer is expected to serve as a general-purpose framework for spatial transcriptomics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3