Application of machine learning in a rodent malaria model for rapid, accurate, and consistent parasite counts

Author:

Yanik Sean,Yu Hang,Chaiyawong Nattawat,Adewale-Fasoro Opeoluwa,Dinis Luciana Ribeiro,Narayanasamy Ravi Kumar,Lee Elizabeth C.,Lubonja Ariel,Li Bowen,Jaeger Stefan,Srinivasan PrakashORCID

Abstract

AbstractRodent malaria models serve as important preclinical antimalarial and vaccine testing tools. Evaluating treatment outcomes in these models often requires manually counting parasite-infected red blood cells (iRBCs), a time-consuming process, which can be inconsistent between individuals and labs. We have developed an easy-to-use machine learning (ML)-based software, Malaria Screener R, to expedite and standardize such studies by automating the counting ofPlasmodiumiRBCs in rodents. This software can process Giemsa-stained blood smear images captured by any camera-equipped microscope. It features an intuitive graphical user interface that facilitates image processing and visualization of the results. The software has been developed as a desktop application that processes images on standard Windows and Mac OS computers. A previous ML model created by the authors designed to countP. falciparum-infected human RBCs did not perform well countingPlasmodium-infected mouse RBCs. We leveraged that model by loading the pre-trained weights and training the algorithm with newly collected data to targetP. yoeliiandP. bergheimouse iRBCs. This new model reliably measured bothP. yoeliiandP. bergheiparasitemia (R2= 0.9916). Additional rounds of training data to incorporate variances due to length of Giemsa staining, microscopes etc, have produced a generalizable model, meeting WHO Competency Level 1 for the sub-category of parasite counting using independent microscopes. Reliable, automated analyses of blood-stage parasitemia will facilitate rapid and consistent evaluation of novel vaccines and antimalarials across labs in an easily accessiblein vivomalaria model.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3