Dynamic changes in neuronal and glial GAL4 driver expression duringDrosophilaageing

Author:

Delandre CarolineORCID,McMullen John P. D.ORCID,Marshall Owen J.ORCID

Abstract

AbstractUnderstanding how diverse cell types come together to form a functioning brain relies on the ability to specifically target these cells. This is often done using genetic tools such as the GAL4/UAS system inDrosophila melanogaster. Surprisingly, despite its extensive usage during studies of the ageing brain, detailed spatio-temporal characterisation of GAL4 driver lines in adult flies has been lacking. Here we show that three commonly used neuronal drivers (elav[C155]-GAL4,nSyb[R57C10]-GAL4andChAT-GAL4) and the commonly used glial driverrepo-GAL4all show rapid and pronounced decreases in activity over the first 1.5 weeks of adult life, with activity becoming undetectable in some regions after 30 days. In addition to an overall decrease in GAL4 activity over time, we found notable differences in spatial patterns, mostly occurring soon after eclosion. Although all lines showed these changes, thenSyb-GAL4line exhibited the most consistent and stable expression patterns over ageing. Our findings suggest that gene transcription of key loci decreases in the aged brain, a finding broadly similar to previous work in mammalian brains. Our results also raise questions over past work on long-term expression of disease models in the brain, and stress the need to find better genetic tools for ageing studies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3