The maturation of infant and toddler visual cortex neural activity and associations with fine motor performance

Author:

Otten KatharinaORCID,Edgar J. Christopher,Green Heather L.,Mol Kylie,McNamee Marybeth,Kuschner Emily S.,Kim Mina,Liu Song,Huang Hao,Nordt Marisa,Konrad Kerstin,Chen Yuhan

Abstract

AbstractOur understanding of how visual cortex neural processes mature during infancy and toddlerhood is limited. Using magnetoencephalography (MEG), the present study investigated the development of visual evoked responses (VERs) in both cross-sectional and longitudinal samples of infants and toddlers 2 months to 3 years. Brain space analyses focused on N1m and P1m latency, as well as the N1m-to-P1m amplitude. Associations between VER measures and developmental quotient (DQ) scores in the cognitive/visual and fine motor domains were also examined. Results showed a nonlinear decrease in N1m and P1m latency as a function of age, characterized by rapid changes followed by slower progression, with the N1m latency plateauing at 6-7 months and the P1m latency plateauing at 8-9 months. The N1m-to-P1m amplitude also exhibited a non-linear decrease, with strong responses observed in younger infants (∼2-3 months) and then a gradual decline. Associations between N1m and P1m latency and fine motor DQ scores were observed, suggesting that infants with faster visual processing may be better equipped to perform fine motor tasks. The present findings advance our understanding of the maturation of the infant visual system and highlight the relationship between the maturation of visual system and fine motor skills.HighlightsThe infant N1m and P1m latency shows a nonlinear decrease.N1m latency decreases precede P1m latency decreases.N1m-to-P1m amplitude shows a nonlinear decrease, with stronger responses in younger than older infants.N1m and P1m latency are associated with fine motor DQ.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3