Point set registration for combining fluorescence microscopy methods

Author:

Severins IvoORCID,Joo ChirlminORCID,van Noort John

Abstract

SUMMARYImplementation of combined microscopy methods provides valuable information across various scientific applications. However, aligning the datasets and finding the correct point correspondence poses a challenge, especially for large, randomly distributed point sets that are subject to positional errors and missing points. Here, we provide a three-step procedure to perform point set registration, which can be applied to datasets with millions of points and stays robust even when only 10% of the points correspond. In the first global step, the scaling and rotation parameters for the imaging systems are determined once on a smaller calibration dataset using a geometric hashing algorithm. When the global transformation is known, full experimental datasets can be registered by performing step two: a course registration using cross-correlation, and step three: a precise registration to fine-tune the transformation. After these three steps, point correspondence is determined by setting a distance threshold based on a statistical model of random point sets that additionally provides the matching error. We have demonstrated its successful implementation in coupling fluorescence and sequencing methodologies. To enable wide application of these point set registration and correspondence algorithms we provide a python library called MatchPoint.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3