Abstract
ABSTRACTUnique for a eukaryote, protein-coding genes in trypanosomes are arranged in polycistronic units (PTUs). This genome arrangement has led to a model where Pol II transcription of PTUs is unregulated. The initial step in trypanosome lytic factor (TLF) mediated lysis ofTrypanosoma bruceirequires high affinity haptoglobin/hemoglobin receptor (HpHbR) binding. Here we demonstrate that byin vitroselection with TLF, resistance is obtained in a stepwise process correlating with loss of HpHbR expression at an allelic level. RNA-seq, Pol II ChIP and run-on analysis indicate HpHbR silencing is at the transcriptional level, where loss of Pol II binding at the promoter region specifically shuts down transcription of the HpHbR containing gene cluster and the adjacent opposing gene cluster. Reversible transcriptional silencing of the divergent PTUs correlates with DNA base J modification of the shared promoter region. Therefore, epigenetic mechanisms exist to regulate gene expression via Pol II transcription initiation of gene clusters in a mono-allelic fashion. These findings suggest epigenetic chromatin-based regulation of gene expression is deeply conserved among eukaryotes, including primitive eukaryotes that rely on polycistronic transcription.
Publisher
Cold Spring Harbor Laboratory