Gut-to-brain regulation ofDrosophilaaging through neuropeptide F, insulin and juvenile hormone

Author:

Chen JiangtianORCID,Nouzova MarcelaORCID,Noriega Fernando G.ORCID,Tatar MarcORCID

Abstract

AbstractDietary restriction slows aging in many animals, while in some cases the sensory signals from diet alone are sufficient to retard or accelerate lifespan. The digestive tract is a candidate location to sense nutrients, where neuropeptides secreted by enteroendocrine cells (EEC) produce systemic signals in response to food. Here we measure howDrosophilaneuropeptide F (NPF) is secreted into adult circulation by enteroendocrine cells and find that specific enteroendocrine cells differentially respond to dietary sugar and yeast. Lifespan is increased when gut NPF is genetically depleted, and this manipulation is sufficient to blunt the longevity benefit conferred by dietary restriction. Depletion of NPF receptors at insulin producing neurons of the brain also increases lifespan, consistent with observations where loss of gut NPF decreases neuronal insulin secretion. The longevity conferred by repressing gut NPF and brain NPF receptors is reversed by treating adults with a juvenile hormone (JH) analog. JH is produced by the adultcorpora allata, and inhibition of the insulin receptor at this tissue decreases JH titer and extends lifespan, while this longevity is restored to wild type by treating adults with a JH analog. Overall, enteroendocrine cells of the gut modulate Drosophila aging through interorgan communication mediated by a gut- brain-corpora allataaxis, and insulin produced in the brain impacts lifespan through its control of JH titer. These data suggest that we should consider how human incretins and their analogs, which are used to treat obesity and diabetes, may impact aging.Significance StatementNeuropeptide F (NPF) produced in theDrosophilagut is an insulin-regulatory hormone (incretin) that is secreted into adult circulation in response to feeding and diet. Suppression of gut NPF extendsDrosophilalongevity, as does knockdown of Neuropeptide F receptors at the insulin-producing medial neurosecretory cells in the brain that control the titer of juvenile hormone. Gut hormones and brain insulin regulate lifespan because they control juvenile hormone titer, which itself is the master endocrine regulator ofDrosophilaaging. Gut NPF modulates Drosophila aging through the integration of nutrient sensing, insulin signaling and juvenile hormone. Given the role of incretin-mimetic drugs to treat diabetes and obesity, it may be time to consider how incretin analogs could impact human aging.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3