Endothelin B receptor inhibition rescues aging-dependent neuronal regenerative decline

Author:

Feng Rui,Rosen Sarah F.,Ansari Irshad,John Sebastian,Thomsen Michael B.,Geoffroy Cedric G.ORCID,Cavalli ValeriaORCID

Abstract

AbstractPeripheral sensory neurons regenerate their axons after injury to regain function, but this ability declines with age. The mechanisms behind this decline are not fully understood. While excessive production of endothelin 1 (ET-1), a potent vasoconstrictor, is linked to many diseases that increase with age, the role of ET-1 and its receptors in axon regeneration is unknown. Using a single cell RNAseq approach, we reveal that in dorsal root ganglia (DRG), satellite glial cells (SGCs), which completely envelop the sensory neuron soma, express the endothelin B receptor (ETBR), while ET-1 is expressed by endothelial cells. Inhibition of ETBRex-vivoin DRG explant cultures improves axon growth in both adult and aged conditions. In vivo,treatment with the FDA- approved compound, Bosentan, improves axon regeneration and reverses the age-dependent decrease in axonal regenerative capacity. Bosentan treatment also enhances the expression of connexin 43 in SGCs after injury in adult and aged mice. These results reveal that inhibiting ETBR function enhances axon regeneration and rescues the age-dependent decrease in axonal regenerative capacity, providing a potential avenue for future therapies.One Sentence SummaryInhibition of endothelin signaling improves nerve regeneration after central and peripheral injuries and counters age-related regenerative decline.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3