Transformer-based modeling of Clonal Selection and Expression Dynamics (TraCSED) reveals resistance signatures in breast cancer

Author:

Maulding Nathan,Zou Jun,Zhou Wei,Metcalfe Ciara,Stuart Josh,Ye Xin,Hafner MarcORCID

Abstract

AbstractUnderstanding transcriptional heterogeneity in cancer cells and its implication for treatment response is critical to identify how resistance occurs and may be targeted. Such heterogeneity can be captured byin vitrostudies through clonal barcoding methods. We present TraCSED (Transformer-based modeling of Clonal Selection and Expression Dynamics), a dynamic deep learning approach for modeling clonal selection. Using single-cell gene expression and the fitness of barcoded clones, TraCSED identifies interpretable gene programs and the timepoints at which they are associated with clonal selection. When applied to cells treated with either giredestrant, an estrogen receptor (ER) antagonist and degrader, or palbociclib, a CDK4/6 inhibitor, time-dependent resistance pathways are revealed. For example, ER activity is associated with positive selection around day four under palbociclib treatment and this adaptive response can be suppressed by combining the drugs. Yet, in the combination treatment, one clone still emerged. Clustering based on partial least squares regression found that high baseline expression of both SNHG25 and SNCG genes was the primary marker of positive selection to co-treatment and thus potentially associated with innate resistance – an aspect that traditional differential analysis methods missed. In conclusion, TraCSED enables associating pathways with phenotypes in a time-dependent manner from scRNA-seq data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3