Deep Geometric Framework to Predict Antibody-Antigen Binding Affinity

Author:

Bandara NuwanORCID,Premathilaka Dasun,Chandanayake Sachini,Hettiarachchi Sahan,Varenthirarajah Vithurshan,Munasinghe AravindaORCID,Madhawa KaushalyaORCID,Charles SubodhaORCID

Abstract

In drug development, the efficacy of an antibody depends on how the antibody interacts with the target antigen. The strength of these interactions gives an indication of how successful an antibody is in neutralizing an antigen. Therefore, the strength, measured by “binding affinity”, is a critical aspect of antibody engineering. In theory, the higher the binding affinity, the higher the chances are that the antibody is successful against the target antigen. Currently, techniques such as molecular docking and molecular dynamics are utilized in quantifying the binding affinity. However, owing to the computational complexity of the aforementioned techniques, running simulations for large antibodies/antigens remains a daunting task. Despite the commendable improvements in deep learning-based binding affinity prediction, such approaches are highly dependent on the quality of the antibody-antigen structures and they tend to overlook the importance of capturing the evolutionary details of proteins upon mutation. Further, most of the existing datasets for the task only include antibody-antigen pairs related to one antigen variant and, thus, are not suitable for developing comprehensive data-driven approaches. To circumvent the said complexities, we first curate the largest and most generalized datasets for antibody-antigen binding affinity prediction, consisting of both protein sequences and structures. Subsequently, we propose a deep geometric neural network comprising a structure-based model and a sequence-based model that considers both atomistic and evolutionary details when predicting the binding affinity. The proposed framework exhibited a 10% improvement in mean absolute error compared to the state-of-the-art models while showing a strong correlation between the predictions and target values. We release the datasets and code publicly (https://drug-discovery-entc.github.io/p2pxml/) to support the development of antibody-antigen binding affinity prediction frameworks for the benefit of science and society.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3