Reference genome bias in light of species-specific chromosomal reorganization and translocations

Author:

Maurstad Marius F.ORCID,Hoff Siv Nam KhangORCID,Cerca JoséORCID,Ravinet MarkORCID,Bradbury IanORCID,Jakobsen Kjetill S.ORCID,Præbel KimORCID,Jentoft SisselORCID

Abstract

SummaryWhole-genome sequencing efforts has during the past decade unveiled the central role of genomic rearrangements—such as chromosomal inversions—in evolutionary processes, including local adaptation in a wide range of taxa. However, employment of reference genomes from distantly or even closely related species for mapping and the subsequent variant calling, can lead to errors and/or biases in the datasets generated for downstream analyses. Here, we capitalize on the recently generated chromosome-anchored genome assemblies for Arctic cod (Arctogadus glacialis), polar cod (Boreogadus saida), and Atlantic cod (Gadus morhua) to evaluate the extent and consequences of reference bias on population sequencing datasets (approx. 15-20x coverage) for both Arctic cod and polar cod. Our findings demonstrate that the choice of reference genome impacts population genetic statistics, including individual mapping depth, heterozygosity levels, and cross-species comparisons of nucleotide diversity (π) and genetic divergence (DXY). Further, it became evident that using a more distantly related reference genome can lead to inaccurate detection and characterization of chromosomal inversions, i.e., in terms of size (length) and location (position), due to inter-chromosomal reorganizations between species. Additionally, we observe that several of the detected species-specific inversions were split into multiple genomic regions when mapped towards a heterospecific reference. Inaccurate identification of chromosomal rearrangements as well as biased population genetic measures could potentially lead to erroneous interpretation of species-specific genomic diversity, impede the resolution of local adaptation, and thus, impact predictions of their genomic potential to respond to climatic and other environmental perturbations.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3