Evaluating machine learning approaches for multi-label classification of unstructured electronic health records with a generative large language model

Author:

Vithanage DinithiORCID,Deng ChaoORCID,Wang LeiORCID,Yin MengyangORCID,Alkhalaf Mohammad,Zhang ZhenyuaORCID,Zhu YunshuORCID,Soewargo Alan ChristyORCID,Yu PingORCID

Abstract

AbstractMulti-label classification of unstructured electronic health records (EHR) poses challenges due to the inherent semantic complexity in textual data. Advances in natural language processing (NLP) using large language models (LLMs) show promise in addressing these issues. Identifying the most effective machine learning method for EHR classification in real-world clinical settings is crucial. Therefore, this experimental research aims to test the effect of zero-shot and few-shot learning prompting strategies, with and without Parameter Efficient Fine-tuning (PEFT) LLMs, on the multi-label classification of the EHR data set. The labels tested are across four clinical classification tasks: agitation in dementia, depression in dementia, frailty index, and malnutrition risk factors. We utilise unstructured EHR data from residential aged care facilities (RACFs), employing the Llama 2-Chat 13B-parameter model as our generative AI-based large language model (LLM). Performance evaluation includes accuracy, precision, recall, and F1 score supported by non-parametric statistical analyses. Results indicate the same level of performance with the same prompting template, either zero-shot or few-shot learning across the four clinical tasks. Few-shot learning outperforms zero-shot learning without PEFT. The study emphasises the significantly enhanced effectiveness of fine-tuning in conjunction with zero-shot and few-shot learning. The performance of zero-shot learning reached the same level as few-shot learning after PEFT. The analysis underscores that LLMs with PEFT for specific clinical tasks maintain their performance across diverse clinical tasks. These findings offer crucial insights into LLMs for researchers, practitioners, and stakeholders utilising LLMs in clinical document analysis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3