Longitudinal Lesion Expansion in Chronic Traumatic Brain Injury

Author:

Freeman Holly J.ORCID,Atalay Alexander S.ORCID,Li Jian,Sobczak Evie,Snider Samuel B.,Carrington Holly,Selmanovic EnnaORCID,Pruyser Ariel,Bura Lisa,Sheppard David,Hunt David,Seifert Alan C.,Bodien Yelena G.,Hoffman Jeanne M.ORCID,Donald Christine L. Mac,Dams-O’Connor Kristen,Edlow Brian L.ORCID

Abstract

AbstractTraumatic brain injury (TBI) is a risk factor for neurodegeneration and cognitive decline, yet the underlying pathophysiologic mechanisms are incompletely understood. This gap in knowledge is in part related to the lack of analytic methods to account for cortical lesions in prior neuroimaging studies. The objective of this study was to develop a lesion detection tool and apply it to an investigation of longitudinal changes in brain structure among individuals with chronic TBI. We identified 24 individuals with chronic moderate-to-severe TBI enrolled in the Late Effects of TBI (LETBI) study who had cortical lesions detected by T1-weighted MRI at two time points. Initial MRI scans were performed more than 1-year post-injury and follow-up scans were performed 3.1 (IQR=1.7) years later. We leveraged FreeSurfer parcellations of T1-weighted MRI volumes and a recently developed super-resolution technique, SynthSR, to identify cortical lesions in this longitudinal dataset. Trained raters received the data in a randomized order and manually corrected the automated lesion segmentation, yielding a final lesion mask for each scan at each timepoint. Lesion volume significantly increased between the two time points with a median volume change of 3.2 (IQR=5.9) mL (p<0.001), and the increases significantly exceeded the possible variance in lesion volume changes due to manual tracing errors (p < 0.001). Lesion volume significantly expanded longitudinally in 23 of 24 subjects, with all FDR corrected p-values ≤ 0.02. Inter-scan duration was not associated with the magnitude of lesion growth. We also demonstrated that the semi-automated tool showed a high level of accuracy compared to “ground truth” manual lesion segmentation. Semi-automated lesion segmentation is feasible in TBI studies and creates opportunities to elucidate mechanisms of post-traumatic neurodegeneration.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3