Childhood brain morphometry in children with persistent stunting and catch-up growth

Author:

Koshy BeenaORCID,Thilagarajan Vedha ViyasORCID,Berkins SamuelORCID,Banerjee Arpan,Srinivasan ManikandanORCID,Livingstone Roshan S,Mohan Venkata Raghava,Scharf RebeccaORCID,Jasper Anitha,Kang Gagandeep

Abstract

AbstractBackgroundEarly childhood stunting affects around 150 million young children worldwide and leads to suboptimal human potential in later life. However, there is limited data on the effects of early childhood stunting and catch-up growth on brain morphometry.MethodsWe evaluated childhood brain volumes at nine years of age in a community-based birth-cohort follow-up study in Vellore, south India among four groups based on anthropometric assessments at two, five, and nine years namely ‘Never Stunted’ (NS), ‘Stunted at two years and caught up by five years’ (S2N5), ‘Stunted at two and five years and caught up by nine years’ (S2N9), and ‘Always Stunted’ (AS). T1-weighted magnetic resonance imaging (MRI) images were acquired using a 3T MRI scanner, and brain volumes were quantified using FreeSurfer software.FindingsAmongst 251 children from the overall cohort, 178 children with a mean age of 9.54 were considered for further analysis. The total brain volume, subcortical volume, bilateral cerebellar white matter, and posterior corpus callosum showed a declining trend from NS to AS. Regional cortical brain analysis showed significant lower bilateral lateral occipital volumes, right pallidum, bilateral caudate, and right thalamus volumes between NS and AS.InterpretationTo the best of our knowledge, this first neuroimaging analysis to investigate the effects of persistent childhood stunting and catch-up growth on brain volumetry indicates impairment at different brain levels involving total brain and subcortical volumes, networking/connecting centres (thalamus, basal ganglia, callosum, cerebellum) and visual processing area of lateral occipital cortex.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3