Detection of latent brain states from baseline neural activity in the amygdala

Author:

Aucoin Alexa,Lin Kevin K.ORCID,Gothard Katalin M.

Abstract

AbstractThe amygdala responds to a large variety of socially and emotionally salient environmental and interoceptive stimuli. The context in which these stimuli occur determines their social and emotional significance. In canonical neurophysiological studies, the fast-paced succession of stimuli and events induce phasic changes in neural activity. During inter-trial intervals neural activity is expected to return to a stable and relatively featureless baseline. Context, such as the presence of a social partner, or the similarity of trials in a blocked design, induces brain states that can transcend the fast-paced succession of stimuli and can be recovered from the baseline firing rate of neurons. Indeed, the baseline firing rates of neurons in the amygdala change between blocks of trials of gentle grooming touch, delivered by a trusted social partner, and non-social airflow stimuli, delivered by a computer-controlled air valve. In this experimental paradigm, the presence of the groomer alone was sufficient to induce small but significant changes in baseline firing rates. Here, we examine local field potentials (LFP) recorded during these baseline periods to determine whether context was encoded by network dynamics that emerge in the local field potentials from the activity of large ensembles of neurons. We found that machine learning techniques can reliably decode social vs. non-social context from spectrograms of baseline local field potentials. Notably, decoding accuracy improved significantly with access to broad-band information. No significant differences were detected between the nuclei of the amygdala that receive direct or indirect inputs from areas of the prefrontal cortex known to coordinate flexible, context-dependent behaviors. The lack of nuclear specificity suggests that context-related synaptic inputs arise from a shared source, possibly interoceptive inputs that signal the sympathetic- vs. parasympathetic-dominated states characterizing non-social and social blocks, respectively.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3