Distinct dopaminergic spike-timing-dependent plasticity rules are suited to different functional roles

Author:

Sosis BaramORCID,Rubin Jonathan E.ORCID

Abstract

AbstractVarious mathematical models have been formulated to describe the changes in synaptic strengths resulting from spike-timing-dependent plasticity (STDP). A subset of these models include a third factor, dopamine, which interacts with the timing of pre- and postsynaptic spiking to contribute to plasticity at specific synapses, notably those from cortex to striatum at the input layer of the basal ganglia. Theoretical work to analyze these plasticity models has largely focused on abstract issues, such as the conditions under which they may promote synchronization and the weight distributions induced by inputs with simple correlation structures, rather than on scenarios associated with specific tasks, and has generally not considered dopamine-dependent forms of STDP. In this paper, we analyze, mathematically and with simulations, three forms of dopamine-modulated STDP in three scenarios that are relevant to corticostriatal synapses. Two of the models considered comprise previously proposed STDP rules with modifications to incorporate dopamine, while the third is a corticostriatal dopamine-dependent STDP rule adapted from a similar one already in the literature. We test the ability of each of the three models to maintain its weights in the face of noise and to complete simple reward prediction and action selection tasks, studying the learned weight distributions and corresponding task performance in each setting. Interestingly, we find that each of the three plasticity rules is well suited to a subset of the scenarios studied but falls short in others. These results show that different tasks may require different forms of synaptic plasticity, yielding the prediction that the precise form of the STDP mechanism may vary across regions of the striatum, and other brain areas impacted by dopamine, that are involved in distinct computational functions.Author summaryLearning from feedback is a crucial ability that allows humans and other animals to respond and adapt to their environments. One important locus for such learning is the basal ganglia, where dopamine-modulated corticostriatal plasticity shapes the dynamics of the cortico-basal ganglia-thalamic network in response to feedback signals to promote adaptive behavior. In this paper we ask, what learning rule is best suited to modeling this dopamine-modulated plasticity? To that end we investigate three learning rules that incorporate spike-timing-dependent plasticity as well as dopaminergic modulation. We study their performance in several settings meant to model the kinds of tasks and scenarios that striatal neurons are likely to be involved in. Each plasticity rule we examined performs well in some settings but fails in others. Different plasticity mechanisms may therefore be better suited to different functional roles and potentially to different regions of the brain.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3