Uncovering differential tolerance to deletions versus substitutions with a protein language model

Author:

Goldman Grant,Chati Prathamesh,Ntranos VasilisORCID

Abstract

AbstractDeep mutational scanning (DMS) experiments have been successfully leveraged to understand genotype to phenotype mapping, with broad implications for protein engineering, human genetics, drug development, and beyond. To date, however, the overwhelming majority of DMS have focused on amino acid substitutions, excluding other classes of variation such as deletions or insertions. As a consequence, it remains unclear how indels differentially shape the fitness landscape relative to substitutions. In order to further our understanding of the relationship between substitutions and deletions, we leveraged a protein language model to analyze every single amino acid deletion in the human proteome. We discovered hundreds of thousands of sites that display opposing behavior for deletions versus substitutions, i.e. sites that can tolerate being substituted but not deleted, and vice versa. We identified secondary structural elements and sequence context to be important mediators of differential tolerability at these sites. Our results underscore the value of deletion-substitution comparisons at the genome-wide scale, provide novel insights into how substitutions could systematically differ from deletions, and showcase the power of protein language models to generate biological hypothesesin-silico. All deletion-substitution comparisons can be explored and downloaded athttps://huggingface.co/spaces/ntranoslab/diff-tol.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3