Engineering a novel probiotic toolkit inEscherichia coli Nissle1917for sensing and mitigating gut inflammatory diseases

Author:

Weibel Nathalie,Curcio Martina,Schreiber Atilla,Arriaga Gabriel,Mausy Marine,Mehdy Jana,Brüllmann Lea,Meyer Andreas,Roth Len,Flury Tamara,Pecina Valerie,Starlinger Kim,Dernič Jan,Jungfer KennyORCID,Ackle FabianORCID,Earp JenniferORCID,Hausmann MartinORCID,Jinek MartinORCID,Rogler GerhardORCID,Westmann Cauã AntunesORCID

Abstract

AbstractInflammatory Bowel Disease (IBD) is characterized by chronic intestinal inflammation with no cure and limited treatment options that often have systemic side effects. In this study, we developed a target-specific system to potentially treat IBD by engineering the probiotic bacteriumEscherichia coli Nissle 1917(EcN). Our modular system comprises three components: a transcription factor-based sensor (NorR) capable of detecting the inflammation biomarker nitric oxide, a type 1 hemolysin secretion system, and a therapeutic cargo consisting of a library of humanized anti-TNFα nanobodies. Despite a reduction in sensitivity, our system demonstrated a concentration-dependent response to nitric oxide, successfully secreting functional nanobodies with binding affinities comparable to the commonly used drug Adalimumab, as confirmed by ELISA and in vitro assays. This newly validated nanobody library expands EcN therapeutic capabilities. The adopted secretion system, also characterized for the first time in EcN, can be further adapted as a platform for screening and purifying proteins of interest. Additionally, we provided a mathematical framework to assess critical parameters in engineering probiotic systems, including the production and diffusion of relevant molecules, bacterial colonization rates, and particle interactions. This integrated approach expands the synthetic biology toolbox for EcN-based therapies, providing novel parts, circuits, and a model for tunable responses at inflammatory hotspots.Graphical abstractGraphical Table of Contents.The engineered probiotic system: Inflamed intestinal cells release the inflammatory regulator TNFα (depicted as red squares), which promotes inflammation through a positive feedback loop. Concurrently, these cells produce large amounts of nitric oxide (NO, represented by yellow circles) during inflammation. Our custom-engineered EcN biosensor can detect NO using a NorR-based sensor (in purple) and subsequently trigger the production of nanobodies (in turquoise). These nanobodies are then released into the extracellular environment via a specially engineered secretion system in the bacterial host (shown in dark blue). Once outside the cell, the nanobodies attach to TNFα, effectively sequestering them and reducing inflammation. The graph at the bottom of this panel illustrates the general behavior of our system: nanobody production starts upon reaching a certain NO concentration threshold and continues in an NO-dependent fashion. As nanobodies are produced, they capture TNFα, leading to a reduction in inflammation and a decrease in NO production. This decrease in NO then halts the nanobody production.SignificanceProbiotics can be engineered to detect and act upon extracellular disease indicators, optimizing therapeutic outcomes. Particularly, self-regulating sense-and-respond genetic circuits have the potential to enhance the accuracy, efficacy, and adaptability of treatment interventions. In this study, we developed and characterized a new integrated and modular toolkit that detects a gut inflammation biomarker, specifically nitric oxide, and responds to it in an inducible manner by secreting humanized nanobodies targeting the pro-inflammatory molecule TNFα. We also develop a coarse-grained mathematical framework for modelling engineered probiotic activity in the gut. This novel system contributes to current efforts to develop new engineered probiotic systems and holds promise for inspiring new treatments for gut inflammation associated with various autoimmune diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3