Abstract
SummaryCognitive control involves allocating cognitive effort according to internal needs and task demands and the Anterior Cingulate Cortex (ACC) is hypothesized to play a central role in this process. We investigated the neural basis of cognitive control in the ACC of rats performing an adjusting-amount delay discounting task. Decision-making in this this task can be guided by using either a lever-value tracking strategy, requiring a ‘resource-based’ form of cognitive effort or a lever-biased strategy requiring a ‘resistance-based’ form of cognitive effort. We found that ACC ensembles always tightly tracked lever value on each trial, indicative of a resource-based control signal. These signals were prevalent in the neural recordings and were influenced by the delay. A shorter delay was associated with devaluing of the immediate option and a longer delay was associated with overvaluing of the immediate option. In addition, ACC theta (6-12Hz) oscillations were observed at the choice point of rats exhibiting a resistance-based strategy. These data provide candidates of neural activity patterns in the ACC that underlie the use of ‘resource-based’ and ‘resistance-based’ cognitive effort. Furthermore, these data illustrate how strategies can be engaged under different conditions in individual subjects.
Publisher
Cold Spring Harbor Laboratory