Nanoporous Platinum Microelectrode Arrays for Neuroscience Applications

Author:

Winter-Hjelm NicolaiORCID,Isdal Leik,Köllensperger Peter A.ORCID,Sandvig AxelORCID,Sandvig IoannaORCID,Sikorski PawelORCID

Abstract

AbstractMicroelectrode arrays are invaluable tools for investigating the electrophysiological behaviour of neuronal networks with high spatiotemporal precision. In recent years, it has become increasingly common to functionalize such electrodes with highly porous platinum to increase their effective surface area, and hence their signal-to-noise ratio. Although such functionalization significantly improves the electrochemical performance of the electrodes, the impact of various electrode morphologies on biocompatibility and electrophysiological performance in cell cultures remains poorly understood. In this study, we introduce reproducible protocols for depositing highly porous platinum with varying morphologies on microelectrodes designed for neural cell cultures. We also evaluate the impact of morphology and electrode size on the signal-to-noise ratio in recordings from rat cortical neurons cultured on these electrodes. Our results indicate that electrodes with a uniform layer of highly nanoporous platinum offer the best trade-off between biocompatibility, electrochemical, and electrophysiological performance. While more microporous electrodes exhibited lower impedance, nanoporous electrodes detected higher extracellular signal amplitudes from neurons, suggesting reduced distance between perisomatic neuronal areas and the electrodes. Additionally, these nanoporous electrodes showed fewer thickness variations at their edges compared to the more porous electrodes. Such edges can be mechanically broken off during cell culturing and contribute to long-term cytotoxic effects, which is highly undesirable. We hope this work will contribute to better standardization in creating and utilizing nanoporous platinum microelectrodes for neuroscience applications. Improving the accessibility and reproducibility of this technology is crucial for enhancing the quality of electrophysiological data and advancing our understanding of neuronal network function and dysfunction.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3