Characterization of the calmodulin-like protein family inChara brauniiand their conserved interaction with the calmodulin-binding transcription activator family

Author:

Symonds Kyle,Wali Udo,Duff Liam,Snedden Wayne A.ORCID

Abstract

AbstractCalcium sensor proteins play important roles by detecting changes in intracellular calcium and relaying that information onto downstream targets through protein-protein interaction. Very little is known about calcium sensors from plant species that predate land colonization and the evolution of embryophytes. Here, we examined the genome of the multicellular algae,Chara braunii, for orthologs to the evolutionarily-conserved calcium sensor calmodulin (CaM), and for CaM-like proteins (CMLs). We identified one CaM and eight CML isoforms which rang in size from 16.4 to 21.3 kDa and are predicted to have between two to four calcium-binding (EF-hand) domains. Using recombinant protein, we tested whether CbCaM and CbCMLs1-7 possess biochemical properties of typical calcium sensors. CbCaM and the CbCMLs all displayed high-affinity calcium binding with estimated globalKDvalues in the physiological µM range. In response to calcium binding, CbCaM and the CbCMLs exhibited varying degrees of increase in exposed hydrophobicity, suggesting different calcium-induced conformational changes occur among isoforms. We found many examples of putative CaM targets encoded in theC. brauniigenome and explored the ability of CbCaM and CbCMLs to interactin plantawith a representative putative target, aC. brauniiCaM-binding transcription factor (CbCAMTA1). CbCaM, CbCML2, and CbCML4 associated with the C-terminal region of CbCAMTA1. Collectively, our data support the hypothesis that complex calcium signaling and sensing networks involving CaM and CMLs evolved early in the green lineage. Similarly, it seems likely that calcium-mediated regulation of transcription occurs inC. brauniivia CAMTAs and is an ancient trait predating embryophytic emergence.HighlightsAlthough calmodulin (CaM) and calmodulin-like (CML) proteins are well studied in vascular plants, little is known about their orthologs in ancient lineages. We characterized CaM and CMLs fromChara braunii, and assessed their ability to bind a representative target protein, a calmodulin-binding transcription factor, CbCAMTA1.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3